If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+140x+149=0
a = 1; b = 140; c = +149;
Δ = b2-4ac
Δ = 1402-4·1·149
Δ = 19004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19004}=\sqrt{4*4751}=\sqrt{4}*\sqrt{4751}=2\sqrt{4751}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-2\sqrt{4751}}{2*1}=\frac{-140-2\sqrt{4751}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+2\sqrt{4751}}{2*1}=\frac{-140+2\sqrt{4751}}{2} $
| 5r+(-1)=180 | | 4x+44=240 | | 4x–7=2x-3 | | 4x-7=2x3 | | 3y-1y=-2 | | 2*x^2+9=0 | | 7y+3y–2y+12=60 | | 28=n/(-5) | | 0.3x^2=0 | | -8(5v+7)=-376 | | -5+3x=4-6x | | -1/4=m-7/4 | | -16f,f=15 | | 9s-5=13.7 | | -15=b+4b | | –2n−10=–2n+7 | | -15=n | | 6x-2+3x=7 | | 28x=40+3x | | 15x³=-12 | | -¼=m-7/4 | | 11(d+339)=770 | | 6x–3=12x–21 | | 8−5x+2=−20 | | 144/r=12 | | -3=x+6-3 | | 2m+6+5m=-15 | | 6x-9=3× | | 4^(x-5)=24 | | -8x+-20+5x-1=48 | | 3x+-21=2x+15 | | 8x+14=7x+28 |